INDUSTRIAL ENGINEERING & MANAGEMENT								
Course Code	19ME4501D	Year	III	Ι				
Course Category:	Program Elective	Branch	ME	Course Type	Theory			
Credits:	3	L – T – P	3 - 0 - 0 - 0 - 0	Prerequisites:	Nil			
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

INDUSTRIAL ENGINEERING & MANAGEMENT

Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to			
CO1	Describe the role and responsibilities of management and the organizational	L2		
	Structures			
CO2	Explain the leadership qualities and concept of plant layout.	L2		
CO3	Elucidate different quality control techniques.	L2		
CO4	Explain various operations management Techniques	L2		
CO5	Solve operations management and project management problems	L3		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P11	P12	PSO1	PSO2
CO 1	1					3		2			3		2	3
CO 2	1					3		2			3		2	3
CO 3	1					3		2			3		2	3
CO 4	1					3		2			3		2	3
CO 5	1					3		2			3		2	3

Syllabus							
UNIT	Content						
		СО					
1	INTRODUCTION : Definition of Industrial Engineering,	CO1					
	Applications, Role of Industrial Engineer, Quantitative tools of IE,						
	Functions of Management, Taylor's Scientific Management, Fayol's						
	Principles of Management, Douglas Mc-Gregor's Theory X and						
	Theory Y, Hertzberg's Two Factor Theory of Motivation, Maslow's						
	Hierarchy of Human Needs.						
2	ORGANISATIONAL STRUCTURES: Basic concepts related to	CO2					
	Organization – Depart mentation and Decentralization, Flat and Tall						
	organizations, Organizational chart, Line organization, Line and staff						
	organization, functional organization						
	LEADERSHIP : Introduction, Definition, Types of leadership based						
	on authority- their area of applicability and suitability, advantages						
	and limitations, Traits approach to leadership						
	PLANT LOCATION: Definition, factors affecting the plant						
	location, comparison of rural and urban sites. Plant Layout -						
	definition, objectives, types of production, types of plant layout -						
	various data analyzing forms-travel chart						

3	INSPECTION AND QUALITY CONTROL : Types of inspections - Statistical Quality Control-techniques-variables and attributes- assignable and non-assignable causes- variable control charts, and R charts, attributes control charts, p charts and c charts. Acceptance sampling- Single Sampling-OC curves. Introduction to TQM- Quality Circles, ISO 9000 series procedures.	CO3
4	WORK STUDY: Definition, objectives, method study - definition, objectives, steps involved- various types of associated charts-out line process charts, flow process charts, two handed process charts and SIMO charts. TIME STUDY: definition, time study, steps involved-equipment, different methods of performance rating- allowances, standard time calculation.	CO4
5	PROJECT MANAGEMENT : Network modeling, Probabilistic model-various types of activity times estimation, programme evaluation review techniques (PERT), probability of completing the project, deterministic model- critical path method (CPM), critical path calculation, crashing of simple of networks.	CO5

Learning Resources

Text Books:

1. S.Bhaskar, "Management Science", Anuradha Publications

2. O.P. Khanna, "Industrial Engineering and Management", DhanpatRai

3. T. R. Banga, S. C. Sharma, N. K. Agarwal, "Industrial Engineering and Management Science" Khanna Publishers.

Reference Books:

1. PannerSelvam, Production and Operations Management, PHI, 2004.

2. Ralph M Barnes, Motion and Time Studies, John Wiley and Sons, 2004.

3. Chase, Jacobs, Aquilano, Operations Management, TMH 10th Edition, 2003.

4. L.S.Srinath, PERT / CPM, affiliate East-West Press, New Delhi, 2000.

5. Phillip Kotler, Marketing Management, Pearson, 2004. 6. S. Bhaskar, "Management Science" Anuradha Publications.